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Conditional Expectations, Conditional Distributions, 
and A Posteriori Ensembles in Generalized Probability 
Theory 
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A general probabilistic framework containing the essential mathematical  struc- 
ture of  any statistical physical theory is reviewed and enlarged to enable the 
generalization of some concepts of  classical probability theory. In particular, 
generalized conditional probabilities of  effects and conditional distributions of 
observables are introduced and their interpretation is discussed in terms of 
successive measurements .  The existence of generalized conditional distributions 
is proved, and the relation to M. Ozawa's  a posteriori states is investigated. 
Examples concerning classical as well as quan tum probability are discussed. 

1. INTRODUCTION 

Many attempts have been made to transfer the concept of  conditional 
expectation in classical probabili ty theory to the probabilistic scheme of 
quantum mechanics. Since the statistical interpretation of quantum theory 
is based on measurements and the classical conditional expectations can 
be interpreted in terms of two successive measurements with random out- 
comes, the notion of a quantum conditional expectation should not only 
be formally analogous to the classical one, it should also admit an interpreta- 
tion in terms of successive measurements.  In this paper, such a concept of  
conditional expectations is formulated in the context of  a general framework 
for statistical theories containing classical and quantum probability as 
special cases. On that basis, conditional distributions of  observables are 
introduced, and their existence is proved. 
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Conditional expectations in quantum mechanics were mostly defined 
and discussed in the context of von Neumann algebras (e.g., Umegaki, 
1954, 1964; Nakamura and Umegaki, 1962; Gudder  and Marchand, 1977). 
Davies and Lewis (1970) supposed the duals of instruments being quantum 
conditional expectations; however, Cycon and Hellwig (1977; Hellwig, 
1981) pointed out that this concept is not completely analogous to the 
classical one. Our formulation of generalized conditional expectations was 
inspired by the latter two papers, hand our development of generalized 
conditional distributions represents a further step toward a generalization 
of classical probability theory, which, in particular, may be useful in 
the investigation of stochastic processes in any statistical physical theory 
(Hellwig and Stulpe, 1983; Stulpe, 1986, 1987). 

To make precise our conception of conditioning, let us briefly describe 
the relation between conditional expectations and successive measurements 
in classical probability. Given a probability space (f~, E, ~),  a measurable 
space (M, E), the real numbers R with the o--algebra E(R) of its Borel sets, 
and two random variables X: f ~  M and Y: ~ R ,  then the conditional 
expectation EX ( y): M o R of Y given X is defined by 

fx  ,(B) Y d ~ = f  Ex(y)  d(~ ~ 

where Y is assumed to be /~-integrable and B~ 7~ is arbitrary. The ~- 
measurable function EX(y) is uniquely determined up to / z o X  -~- 
equivalence. If  there is a point x ~ M such that {x} ~ 7~ and/z (X-~({x})) # 0, 
then 

1 f• yd lz=fyd[ t~(X- l ({x) )~ ' ) )  EX(y)(x)-p,(X-I({x})) -'({x}) \ ]-6 ( X -  1 ({x})) 

holds true. Thus, EX(Y)(x) is the conditional expectation of Y given that 
X(oJ) = x, resp. the conditional expectation of Y given X-l({x}),  which is 
just the expectation value of the observable Y in the subensemble of the 
ensemble /z obtained by selection of systems according to the outcome x 
of  the observable X. 

This paper has essentially three aims. First, we formulate the general 
probabilistic framework on which our developments are based. According 
to Ludwig (1983, 1985), the essential mathematical structure of any statistical 
physical theory consists of a dual pair of a base-norm Banach space and 
an order-unit norm Banach space which is interpreted in terms of ensembles 
and effects. Following Werner (1983), we call such a dual pair a statistical 
duality. For technical reasons, we distinguish some statistical dualities we 
call generalized probability spaces. The order-unit norm space of a generalized 
probability space is closed under certain least upper bounds such that the 
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ensembles are represented by normal positive functionals acting on the 
linear hull of  the effects. Base-norm spaces in the context of statistical 
theories were also considered by Davies and Lewis (1970; Davies 1976), 
Edwards (1970, 1971), and Gudder  (1979a,b). Moreover, Davies and Lewis 
introduced the concept of  instruments to describe preparative measurements 
of  observables. In Section 2 we establish statistical dualities and generalized 
probabili ty spaces, and in Section 3 we recall the concepts of  operations, 
observables, and instruments and put them into our setting. 

The second aim is to introduce conditional expectations in generalized 
probability theory by means of instruments. Proceeding on the lines suggested 
above, we accomplish this in Section 4. It turns out that the generalized 
conditional expectations and distributions presented here are closely related 
to the corresponding notions in classical probabili ty theory. 

Our third aim concerns the introduction and investigation of generalized 
conditional distributions, which are treated in Section 5. In particular, we 
deal with their existence and uniqueness. In Section 6, finally, the relation 
of conditional distributions to the a posteriori states introduced in quantum 
mechanics by Ozawa (1985a,b) is investigated, and some examples are 
considered. 

2. GENERALIZED PROBABILITY THEORY 

As basic elements of  a statistical physical theory we will comprehend 
the statistical ensembles of physical systems and the classes of  statistically 
equivalent realistic measurements with the outcomes 0 and 1 ,which  are 
called effects. The set K of  ensembles and the set L of effects are connected 
by a probabili ty functional 

/~: K x L--> [0, 1] 

(v, l)-~ ~(v, I) 

which assigns to every v c K and every l ~ L the probability for the outcome 
1 of  the effect l in the ensemble v. In particular, we assume that there are 
two effects 0, e z L yielding the probability 0, resp. 1, for outcome 1 in any 
ensemble. Corresponding to the physical fact that one can produce mixtures 
of  ensembles as well as of  effects, K and L should be, in a certain sense, 
convex sets, and the probabili ty functional g should be affine in both 
arguments. 

As it was shown by Ludwig (1983, 1985), K and L can be embedded 
in a dual pair <V, W) of real vector spaces such that K and L linearly span 
V and W, respectively, and /x  coincides with the restriction of the bilinear 
functional ( . , . )  to K x L. The pair <V, W) is uniquely determined up to 
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isomorphism by K, L, and Iz. Moreover, some slight mathematical idealiz- 
ations are sufficient to equip V and W with further structures. It turns out 
that (V, W) is a dual pair of ordered Banach spaces where (V, K)  is a base 
norm space, (W, e) an order-unit norm space, and L = [0, el. The precise 
structure of this construction is given by the following definition (compare 
also Werner, 1983). 

Definition 2.1. Let a complete base-norm space (V, K)  with closed 
base K c V, a complete order-unit norm space (W, e) with closed order-unit 
interval L := [0, e] c W, and a nondegenerate bilinear functional ( . , . ) :  V x 
W ~  R be given. The pair iV, W) is called a statistical duality if ( . , - )  is 
compatible with the norms and orderings in V and W, i.e., if for all v ~ V 
and l ~ W the following conditions hold: 

(i) IlvlJ = sup,<-e,4I(V, l)l 
(ii) Illll =supv~K[(V, I)1 

(iii) V-->0iff(V, /)-- 0 for all l-----0 
(iv) l >-- 0 iff iV, l) --> 0 for all v ~ 0 

Remark 2.1. 
(a) Condition (i) means that the linear functionals iv := iv, �9 ) on W are 

bounded with [1 iv II = II v II, and (iii) means that iv is positive if and only if 
v - 0. The analogous statements are valid for the functionals jl := ( . ,  1). 

(b) For v --- 0 it follows that II v II = iv, e>. Namely, v >- 0 and - e  -< l --- e 
imply - iv ,  e)<-(v, l)<-(v, e), resp. [iv, l)l<-(v, e). Hence, Ilvll = 
supt~[-e.4I(V, l)[ =iv,  e) In particular, if v e  K, then Itvll =<v, e)= 1. 

(c) The duid space V' together with the canonical positive linear 
functional g defined by ~(v):= 1 for all v e K is a complete order-unit 
norm space with closed order-unit interval /_~:=[0, g ] c V ' ,  and by 
/ ( :=  {A~W'JA---0 and A(e )=  1}, W' is a complete base-norm space with 
closed base / (  c W' (see, e.g., Nagel, 1974). 

(d) The canonical embeddings i : V ~ W '  and j :W->V '  are linear, 
isometric, and positive with positive inverses i-1: iV--> V and j - l :  jW--> W. 
Moreover, we have iK c_ I(, je = g, and jL  c_ [. 

(e) iV, V') and (W', W) are statistical dualities by the canonical bilinear 
forms of the constituting spaces. 

The physical interpretation of statistical dualities is, by construction, 
as follows. Any sort of physical system is associated with suitable (V, K),  
(W, e), and iV, W). The elements of the convex sets K and L are mathemati- 
cal pictures of the ensembles and effects, respectively. The probability for 
the outcome 1 of an effect I e L in an ensemble v e K is given by 

O=(v, O)~ (v, l)<- (v, e)= 1 
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We mention that the partial order in W, resp. in L, can be interpreted 
physically. The condition I~-<12 for two effects I1, 12~ L is equivalent 
to (v, l~)<-(v, 12) for all v~ K, that is, a measuring apparatus representing 
12 is more sensitive than an apparatus for l~. We call the extreme points 
of K, if any, pure ensembles and the extreme points of L decision 
effects. 

The weak topology ~r(V, W) is the coarsest topology in V such that all 
linear functionals jl, l ~ W, are continuous. A neighborhood base of v ~ V 
is given by the sets 

U(v ;  l l , . . .  , In; vll( , t , ) - ( v ,  1~)1 < e for li ~W, i=  1 , 2 , . . . ,  n} 

An ensemble v ~ K is physically approximated by 15 ~ K if for many (but 
finitely many!) effects l~, 12, . . . ,  1, ~ L the probabilities 05, l;) differ from 
(v, 1;) by an amount less than a small e > 0. This statement can be tested 
experimentally and can mathematically be characterized by ~5 
U(v; l l , . . . ,  l,; e). Hence, cr(V,W), resp. o - ( V , W ) n K  = o-(V, L ) n K ,  is 
the "topology of physical approximation of ensembles" (cf. Ludwig, 1983, 
1985; Werner, 1983; Haag and Kastler, 1964). Analogously, the weak 
topologies o-(W, V) and or(W, V) n L = o-(W, K) c~ L, respectively, describe 
the physical approximation of effects. 

The topologies o'(V, W) and o-(W, V) correspond to cr(W', W) n iV and 
cr(V', V)c~jW. The K, L, K, L, and the corresponding positive cones are 
closed in the respective topologies o-(V,W), cr(W,V), cr(W',W), and 
o-(V', V). Hence,/~ and/7, are even compact by the Banach-Alaoglu theorem. 
The statement V separates the points of W is equivalent to iV c_W' 
being o-(W', W)-dense in W'; the analog holds for jWc__ V'. In particular, 
iK is a o-(W', W)-dense subset of /~ and jL  a o-(V', V)-dense subset 
of s 

If  {v,}n~N is an increasing norm-bounded sequence in V (i.e., vn -< vn+~, 
II v~ II -< c, c - 0), then the least upper bound sup~N vn exists and is equal to 
II �9 I I - l im,~  v, (Ludwig, 1983, 1985). An analogous result for W does not 
hold in general. However, for increasing norm-bounded sequences {A~}n~N 
in V' (i.e., - c Y -  < An --- An+~-- cY), supneN An = or(V',  V)-lim._~ An holds, 
which can be generalized to increasing norm-bounded nets {A~}.~A in V'. 
This assertion follows from the tr(V', V)-compactness of the closed unit ball 
in V', but it can also be proved elementarily. Let {A.}.~N be an increasing 
norm-bounded sequence in V'; then for all v->0, l im._.~A.(v)= 
sup.~N A.(V) exists. Because the positive cone in V is generating, the limit 
even exists for all v ~ V. Moreover, an element A ~ V' is defined by A(v):= 
lim.~oo A.(v). It is obvious that 

A = tr(V', V)-lim An = sup A~ 
n~oO n~N 
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holds, where the latter least upper bound is understood with respect to the 
partial order in V'. 

For technical reasons it is useful now to distinguish those statistical 
dualities (V, W) whose order-unit norm spaces W are closed under the least 
upper bounds of increasing sequences (Stulpe, 1986). 

Definition 2.2. We call a statistical duality (V, W) a generalizedprobabil- 
ity space if all increasing norm-bounded sequences {In}~N in W converge 
in the o-(W, V)-topology. 

Remark 2.2. 
(a) For a statistical duality (V, W) to be a generalized probability space, 

it is sufficient that jWc_ V' be o-(V',V)-closed. But this is equivalent to 
jW = V', since jW is o-(V', V)-dense in V'. Examples show the existence of 
generalized probability spaces with proper subspaces jW c V'. 

(b) The condition of the definition means that all increasing norm- 
bounded sequences {ln}n~N in W have a least upper bound in W satisfying 

(v, suplnt=sup(v,l~) 
n ~ N  n ~ N  

for v-> O. This least upper bound is given by 

sup In = o-(W, V)-lim In 

Furthermore, by 

j ( t r (W,V) - ! im  l~) =o'(V', V)-lim ~N 

we obtain 

j(su l ) su j,n 
i.e., supn~N In corresponds to the least upper bound of {j/~}~N taken in V' 
(and not only in jW!). 

(c) Positive linear functionals on a complete base-norm space with 
closed cone are automatically bounded, and analogously positive linear 
functionals A on an arbitrary order-unit norm space (W, e), the latter ones 
fulfilling IIAII = m(e) (see, e.g., Stulpe, 1986). Now let (W, e) be a complete 
order-unit norm space with closed cone such that supn~N I, exists for 
increasing norm-bounded sequences. A positive linear functional A: W ~ R 
is called normal if 

A (sup l , )  = snup A(ln) 
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holds. This definition and the preceding statements can be transferred to 
positive linear maps between order-unit and base-norm spaces. 

(d) If (V,W) is a generalized probability space, then the em- 
bedding map j as well as the functionals iv with v~V and v - 0  are 
normal. 

That (V, W) is a generalized probability space means physically that 
for any sequence of effects increasing in sensitivity there exists one effect 
that is more sensitive and is physically approximated by the given sequence. 

We next consider some familiar examples of statistical dualities and 
generalized probability spaces. 

Example 2.3. 
(a) For any base-norm Banach space V and any order-unit norm 

Banach space W, (V, V') and (W', W) are statistical dualities by their canoni- 
cal bitinear functionals. Moreover, (V, V') is a generalized probability space, 
whereas in general for (W', W) this does not happen. 

(b) A tr-finite measure space (12, E,/z) yields an example of type (V, V'), 
namely, V := L1(12, E,/z), W := L~(12, ~, tz) ~- V', (p, f )  := S pfdlz. 

(c) Another special case of (V, V') arises from a complex separable 
Hilbert space H. The dual pairing of the space V:= C~(H) of self-adjoint 
trace-class operators and the space W: = Bs(H) of all bounded self-adjoint 
operators in H by (V, A):=tr VA, W-=-V ', describes usual quantum 
mechanics. 

(d) The last example can be generalized to V := M,~ and W := Ms --- V' 
where M~ consists of the self-adjoint elements of avon Neumann algebra 
M on an arbitrary complex Hilbert space and M.  denotes the predual 
of M. 

(e) Let M be a compact Hausdorff space, E0(M) the o--algebra of its 
Baire sets, and MR(M, "~o(M)) the space of bounded, signed Baire measures. 
An example of type (W', W) is given by V:= MR(M, ~o(M)), W:= CR(M), 
and (r,,f):=Sfdv, since V~W'.  

(f) We obtain a more general example for (W', W) by the Segal algebra 
A, of the self-adjoint elements of an arbitrary unital C*-algebra A, namely, 
V:= As*, W:= A,, and (~o, a):= to(a), where V=W'. 

(g) If V:= MR(I], E) is the space of bounded, signed measures on an 
arbitrary measurable space (12, E) and W := FR(12, E) the space of all real- 
valued, bounded measurable functions, then a statistical duality (V, W) is 
defined by (v,f):=~fdv. The duality (V, W) is a generalized probability 
space where in general jW is a proper subspace of V' (and iV a proper 
subspace of W'). 
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3. OPERATIONAL CONCEPTS 

In this section, we will introduce operations, observables, and instru- 
ments in our formulation (cf. Davies and Lewis, 1970; Edwards, 1970, 1971; 
Davies, 1976; Ludwig, 1983, 1985; Kraus, 1983). 

A measurement is preparative if the systems interacting with the 
apparatus are not absorbed. The classes of statistically equivalent prepara- 
tive 0-1 measurements are called operations. Formally, operations are 
defined as follows. 

Definition 3.1. Let a statistical duality (V, W) be given. A positive linear 
map T: V->V is called an operation if: 

(i) Tv ~ [._Jo<-~-i aK holds for all v ~ K 
(ii) The adjoint map T' with respect to (V, W) exists. 

Remark 3.1. 
(a) A positive linear map T satisfies condition (i) if and only if [I Tv I[ -< 1 

for v c K, resp. if II TII-< 1. For any linear map T, (ii) is equivalent to 
T*(joW) _ joW,  where jo denotes the canonical embedding of W into the 
algebraic dual space V*, and T* the adjoint of T with respect to the duality 
(V, V*). Furthermore, T' exists if and only if T is o'(V, W)-continuous. 

(b) T' has the properties T'->0, Ilrll--[IT'll--liT'ell, T ' L ~ L ,  and 
T"=  T. Moreover, a o'(V, W)-continuous linear map T is an operation if 
and only if T' L c_ L. 

_ (c) If (V, W) is a generalized probability space and T an operation, 
then T' is normal. This follows from its or(W, V)-continuity or from 

where v -> 0. 
Given an ensemble v 6 K, then we interpret as follows: 

(i) II Zvl[ = < Zv, e> = <v, T'e) is the probability for the outcome 1 of the 
measurement described by T. 

(ii) If Tv ~ O, Tv/II Tvll is the ensemble obtained by selection of systems 
according to the outcome 1. 

As a consequence of (i), l:= T'e is the effect "measured by T." 
Let us consider the successive measurement of l=  T'e and another 

effect l'E L in an ensemble v. This means that T is measured in the ensemble 
obtained by nonselective measurement of/ .  The joint probability for occur- 
rence of the outcomes 1 of 1 and l" is given by 

I / Tv ~>=(Tv, l )= (v ,  T' 
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i.e., T'T~ L is the effect for occurrence of the outcomes 1 of 1 and ~ by 
successive measurement. 

The interpretation of operations in terms of preparative measurements 
is not the only one, in particular for two special classes of operations. Using 
a terminology similar to that of Ludwig (1983, 1985), we call an operation 
T: V ~ V  with TK c K a mixture endomorphism. For such a map IITII = 1 
holds. The property TK c_ K of  a o'(V, W)-continuous linear map T is 
equivalent to T' - 0 and T'e = e. A bijective mixture endomorphism is called 
a mixture automorphism if TK = K  holds and (T- l )  ' exists. A tr(V,W)- 
continuous linear map is a mixture automorphism if and only if T' is 
bijective, T'L= L is fulfilled, and ( (T ' ) - I )  ' exists. Moreover, T and T' are 
automorphisms with respect to norm and order in V and W. 

Mixture endomorphisms are used to describe the dynamics of physical 
systems, and mixture automorphisms and their adjoints also have an impor- 
tant meaning as symmetry transformations. 

Definition 3.2. Let (V,W) be a statistical duality and I :=  
((s, t) c (Ro)21 s -< t}. A family { Ts,}~s.t~ ~ of mixture endomorphisms satisfy- 
ing (i) T, = idv for all t~ R~- and (ii) Tr, = TstTrs for all r, s, t~ R~- with 
r - s - <  t is called a dynamical family. One-parameter semigroups {Tt}t~a~- 
of  mixture endomorphisms and one-parameter groups {Tt}t~a of mixture 
automorphisms are called dynamical semigroups and dynamical groups, 
respectively. 

If the systems under consideration are developing in time according 
to a dynamical family {Ts,}(s,o~1, then the probability for the outcome 1 of 
an effect 1 ~ L at time t -> s in an ensemble v ~ K prepared at the time s >- 0 
is given by 

(L,v, l>=(v, T'~,I) 

A dynamical semigroup corresponds to a dynamical family homogeneous 
in time, and a dynamical semigroup of mixture automorphisms can be 
extended to a dynamical group. 

Now we will introduce observables, which, physically, are defined as 
statistically equivalent measuring apparatus with arbitrarily many outcomes. 
The mathematical definition of observables is the following one. 

Definition 3.3. Let a statistical duality (V, W) and a measurable space 
(M, "~) be given. An observable on (M, E) is defined as an effect-valued 
measure on 7~ i.e., an observable is a map F: "~-~ L, B ~ F(B) ,  with the 
following properties: 

(i) F (Q)  = 0, F ( M )  = e 
(ii) F((._J,=I~ B~)=Y~=I~ F( B,) := o'(W. V ) - l i m . ~  Y~=~ F( B,) for every 

sequence of mutually disjoint sets B~ ~ ~" 
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We call F a decision observable if F(2)___ OeL where OeL denotes the set 
of  extreme points of L). 

Remark 3.2. According to (ii), we ~ostulate that o'(W,V)- 
n F co l i m , ~  ~i=1F(B~) exists and is equal to (Ui=~ B~). If (V, W) is a general- 

ized probability space, then tr(W,V)-convergence of {Y.~ F(Bi)},~N 
follows from the finite additivity of F. 

For an ensemble v e K, the observable F on (M, 2)  defines a probability 
measure pF on E by 

PE~(B) := (v, F(B)) 

P~ (B) as the probability We interpret M as the "value space" of F and v 
for occurrence of values of F in the set B 6 ~. We call P~ the probability 
distribution o f F  in the ensemble v. In the special case (M, 2 ) : =  (R, 2(R)) ,  
where ~(R) are the Borel sets of R, the expectation value of the observable 
F in v is defined by 

(F)~ := f r162 

provided that the integral exists. If it does even exist for every v ~ K and 
if (V, W) is a generalized probability space, then the F-integral ~ r162 
exists as that uniquely determined element of W that satisfies (v, ~ r162 = 

r F(dr for all v ~V [see Stulpe (1986) and the end of Section 5], and 
the expectation values of  F are also given by 

where v e K. 
Instruments are associated with statistically equivalent preparative 

measurements of observables. 

Definition 3.4. Let a statistical duality (V, W) and a measurable space 
(M, 2)  be given. An instrument J on (M, E) is an operation-valued measure 
on ~-, i.e., J is a map B ~ J(B) assigning to every measurable set an operation 
such that the following conditions are satisfied: 

(i) J (Q)  =0  
(ii) J (M)v~  K for all v c  K 

j oo oo �9 n 
(iii) (U,=lBi)v=Zi=lJ(Bi)v:=~(V,W)-hm,_~Zi  ,J(Bi)v for 

every sequence of mutually disjoint sets Bi ~ ~ and all v ~ V. 

Remark 3.3. 
(a) J(M) is a mixture endomorphism. 
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B (b) For v->0, the sequence {Y~i=lJ( i ) / f l }ncN according to (iii) is 
increasing and norm-bounded. This implies that the limit exists also in norm 
for any v c V. 

Given an ensemble v ~ K, then the following interpretation is evident: 

(i) ]]J(B)v]l=(J(B)v,e)=(v,J'(B)e) is the probability that the 
observable "measured by J "  takes values in the set B c ~'. 

(ii) IfJ(B)v # O, J(B)v/[IJ(B)v]] is the ensemble obtained by selection 
of systems according to outcomes in B. 

By (i), the instrument J determines the observable F := J ' ( .  )e. 
Note that, in general, J(M) is not equal to the identity in V. This is 

because a measuring apparatus representing J may influence the systems 
during the measurement. The additivity of J can be explained as follows. 
Let B, B1, B2 ~ E, B = B1 w B2, and B~ ~ B 2 = ~ .  Physically, the ensemble 
J(B)v/llJ(B)vll should be a mixture of J(BOv/llJ(B1)vl] and 
J(n2)v/IIJ(n2)v II in ratio 

F F F v P~ (B,) Po (B2) 
P~ (B2) P~(B,) :  pF(B). F P~(B) 

That iso 

J(B)v [IJ(B0v]l J(BOv IIJ(B~)vll J(B2)v 
IIJ(B)vll-[IJ(U)vll IIJ(B~)v[I [IJ(B)vll IlJ(B2)vl] 

and thus J(B)=J(B,)+J(B2). 

4. GENERALIZED CONDITIONAL EXPECTATIONS 

In this section, we presuppose (V, W) to be a generalized probability 
space and (M, E) a measurable space. Let an instrument J on (M, E) 
determining the observable F := J ' ( .  )e, a fixed ensemble v ~ K, and an effect 
I c L be given. 

Consider the successive measurement of F=J'( . )e  and I in the 
ensemble v. This means that 1 is measured in the ensemble J(M)v obtained 
by nonselective measurement of F. The probability for outcomes of the 
observable F in the set B ~-~ is given by 

P~(B) := (v, F(B)) :  (J(B)v, e) = ]]J(B)v[I (1) 

and the joint probability for occurrence of values of F in B and for the 
outcome 1 of the effect I by 

/ J(B)~ ) 
P~(B) \l[J(B)vll' t = <J(B)v, t> = <v, J'(B)/> 
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Now let I be an arbitrary element of W. We have that B ~ (J(B)v,  l) defines 
a bounded signed measure on E which is absolutely continuous with respect 
to the probability measure P~. Indeed, because of (1), it follows from 

F Pv (B) = 0 that (J(B)v,  l) = 0. Hence, we can apply the Radon-Nikodym 
theorem and obtain the following statement. 

Proposition 4.1. For any l ~ W  there exists a E-measurable function 
J E~(I): M ~  R such that 

(J(B)v,  l) = [- EJo(1) dP~ (2) 
d B 

holds for all B ~ E. This function is determined uniquely v Pv -a.e. 

Definition 4.1. We call E~(1) a version of  the generalized conditional 
expectation of  l given the instrument J and the ensemble v; the equivalence 
class [ Eto(1) ] is the generalized conditional expectation of  l given J and v. For 
an effect l~ L, E~(1) is also called a version of  the generalized conditional 
probability of  1. 

Let us remark that this definition is analogous to the definition of the 
corresponding notions in classical probability theory [see, e.g., Bauer (1972) 
and Section 1]. The type of generalized conditional expectation established 
here was introduced by Cycon and Hellwig (1977) implicity, for the quantum 
case explicitly by Hellwig and Stulpe (1983; Hellwig, 1981) and Ozawa 
(1985a), and for the general case explicitly by Stulpe (1986). 

To give an interpretation of generalized conditional expectations, 
assume that there is a set B~ and a version J "~ E~(I) such that E~(I) is 
constant on B and p F ( B ) ~  0 (e.g., B := {x} for x ~ M with {x)~ '~ and 
PF({x}) # 0). Then equations (2) and (1) yield 

(J(B)v,l> [ J(B)v l) 
E~(1)(x) P~(B) \ ~ 1 1 ,  _ (3) 

for all x c B. This shows that for an effect 16 L the value of any version 
J E~(I) of the generalized conditional probability at each point x ~ B is just 

the elementary conditional probability which coincides with the probability 
for the outcome 1 of l in the ensemble obtained by the selection procedure 
according to outcomes of F in the set B. This remark motivates the denota- 
tions "generalized conditional probability" and "generalized conditional 
expectation," respectively. 

The properties of versions of conditional expectations are listed in the 
next theorem. 

Theorem 4.1. The following statements are valid for the versions of 
the generalized conditional expectations: 

(i) E~(al+~T) ~ ~ " = aE~(1)+[3E~(1) PF-a.e. for l, T~W and a,/3 ~R 
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(ii) E~(1)<E~(T) ~ - -  Po-a.e. ,  where l, [ ~ W  and l----- 
F (iii) E~(O)=O and E~(e)--1 P,-a.e. 

(iv) IEs -< IlZll P~-a.e. for I ~ W  
(v) If  {I~},~N is an increasing, norm-bounded sequence in W, then 

holds F P,~ -a.e. 

sup = Ev( l~)  
\ n o N  hEN 

Proof. From 

dP~ =(J(B)v, a l+ f i~ ) )=  (aE~(1)+flE~(~)) dP~ 
B 

for all B e E  it follows that E~(al+~)  aE~(l)+flE~(~) holds ~ = P~ -a.e. 
Because of v ~ K  we have (J(B)v, 1)<-(J(B)v, ~) for l -  < l, which implies 

J J ~ F P~ -a.e. = Eo(l)<-Ev(1) Moreover, (J(B)v,e) P~(B)=SBxMdP~ gives 
J F E~(e) =xMP~-a.e. (XA denotes the characteristic function of any subset 

Ac_M). 
Now, from -IlZlle-< 1-< Illlle we obtain -Ib/l lx~- E~(I)<- 

P~-a.e., resp. IE~(1)(x)l<-IlZl[ for P~-almost all x~  M. 
Let {I,},~N be an increasing, norm-bounded sequence in W with l:= 

Ev(l,) satisfy sup,~N l,. The versions 

J ) J F 
- _ E o ( l ~ 2 4 7  <_ E ~ ( I )  <_ Illll P .  - a . e  II1111-< E~(1,) <- E~(I.  < / 

which implies that sup,~N Eo(l,)J exists P~-a.e. and is P~F-a.e. equal to a 
bounded, measurable function. The definition of E~(1) and E~(1,) and the 
monotone convergence theorem (or the dominated convergence theorem) 
now yield 

> E~ sup/ ,  dP~= J(B)v, supI, =sup(J(B)v, 1,) 
\n~N non n~N 

f J F f J F = dPv = E~,(I,) dP, sup E~(I,) sup 
n ~ N  . B B n ~ N  

Since B 6 E is arbitrary, it follows the assertion (v). �9 

Corollary 4.1. The map e~:W~La(M,~ ,p~  defined by ev(1)J .=" 
[E~(I)] is linear, positive, and normal and satisfies I1~11--1 and e~(e) = 

[xM]. 

Definition 4.2. We call e~ the generalized conditional expectation given 
J and v. 



600 Stuipe 

5. GENERALIZED C O N D I T I O N A L  DISTRIBUTIONS 

Again, we suppose (V, W) is a generalized probability space. Let us 
consider the successive measurement of  two observables F := J ' ( .  )e and G 
in an ensemble v c K, the first one associated with an instrument J on some 
measurable space (M, 7~) and the second one defined on some measurable 
space (M' ,  ~ ' ) .  In this situation, the joint probabilities 

(J(B)v, G(B')) = [ ESv(O(B')) dP F 
3 B 

(B ~ ~,  B ' ~  ~ ' )  are of  interest. Some properties of  the versions of  the 
corresponding generalized conditional expectations can easily be derived 
from Theorem 4.1 and are quoted in the following proposition. 

Proposition 5.1. For versions ESv(G(B')) of the generalized conditional 
probabilities of  G(B' ) ,  B ' c  ~ ,  the following equalities and inequalities hold 

F P~ -a.e.: 

(i) O<-E~(G(B'))<-I 
(ii) E~(G(Q))=0, E~(G(M'))= 1 

(iii) s , , , E~(G(B,))<-ESv(G(B'2)) for B~c_B2 
(iv) E'ItG :1 I~ ~ s , v~ ~.,i:IB~))=~,~=IEv(G(Bi)) f o rB lc~B  s - ' -Q( i# j )  

These statements do not imply that B'-> E~(G(B'))(x) is a probabili ty 
measure on E '  for P~-a lmost  every x e M, because the equation (iv), for 
instance, only holds up to a set of  measure zero depending on the sequence 
of disjoint sets BI and, in general, there are more than countably many 
such sequences. However, as we shall show by Theorem 5.1, under  a 
technical assumption it is always possible to choose the versions E~(G(B')) 
in such a manner  that they define a probabili ty measure for each x ~ M. In 
this case the map P: M x E ' ~ [ O ,  1] given by 

P(x, B'):= E~(G(B'))(x) 

is a Markov kernel, i.e., P is a "~-measurable function in the first argument 
and a probability measure on ~ '  in the second one. 

Definition 5.1. A Markov kernel P := p~,G on M x _~' is called a general- 
ized conditional distribution of the observable G given the instrument J and 

Pv' (. ,  B') is a version of the conditional the ensemble v if for every B' ~ _ ~ ' ,  s o 
expectation of G(B'), i,e., 

P(" B ' ) :=  s~ , P~" ( ' ,  B') = E ~ ( G ( B ' ) )  
F Pv -a.e. 

The next proposit ion and the following theorem give information about 
existence and uniqueness of  generalized conditional distributions; they are 
closely related to corresponding classical statements (cf. Bauer, 1972). 
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Proposition 5.2. Let P~ and P2 be two generalized conditional distribu- 
tions of  G given (J, v). Then, for every B ' c  E' ,  there is a set NB, c - -  ~ with 

F Pv (N~') = 0 such that 

PI(X, B ' )  = P2(x, B') (4) 

is fulfilled for all x c M\NB,. I f  the o--algebra "~' is countably generated, 
then there exists a set N of measure zero such that equation (4) holds for 
all x e M \ N  and all B '~  7~'. 

Proof The first assertion is immediately implied by the definition of 
conditional distributions. To prove the second one, let F' be a countable 
generator of  ~ '  which can be assumed to contain M '  and to be stable against 
finite intersections. For each set B '~  F' there exists a set NB, of  measure 
zero so that (4) holds for x ~ NB,. The countable union N : =  UB'~r' NB, is 
also a set of  measure zero, and (4) is fulfilled for any x ~ N and any B' ~ F'. 
That is, for x ~ N  the measures Pl(x, ") and P2(x, ") coincide on F', and 
hence, by a well-known uniqueness theorem, they are equal. �9 

Under  technical assumptions concerning the measurable spaces (M, ~)  
and (M' ,  ~7'), it was proved by Davies and Lewis (1970, Davies 1976) by 
means of functional-analytic methods that a probabili ty measure/~ on the 
product  'w| is defined b y / z ( B  x B ' ) : =  (J(B)v, G(B')). Using this fact, 
the following theorem can be derived from the corresponding classical 
statement. However, we prove it by mimicking the classical proof, for four 
reasons. First, the classical statement is a special case of  our general one, 
as we shall see in Section 6. Second, our proof  requires only probabilistic 
methods. Third, we have to make a technical presupposit ion only for 
(M' ,  -~'). Finally, we wish to present a self-contained formulation: a polish 
space is a topological space whose topology can be derived from a complete 
and separable metric. 

Theorem 5.1. Let M '  be a polish space and ~ ' : =  "~(M') the tr-algebra 
of  its Borel sets. Then there exists a generalized conditional distribution P 
of G given J and v. 

Proof I f  F' is a class of  subsets of M '  and I" := F ' u  {CM,B'IB'c F'} U 

{M', @} (CM,B' denotes the complement  of B'), then the algebra A' gener- 
ated by F' consists of  all finite unions of  finite intersections of sets of  F'. 
Now let F' be a countable generator of  E ( M ' ) ;  then A' is a countable 
generator of  "~(M'), which is an algebra. Denote the elements of A' by D'~, 
where i o N  (replace i~ N by i =  1, 2 , . . . ,  r if the class A' is finite). B ' ~  
(J(M)v, G(B')) is a probabili ty measure on ~7(M'). From the inner regular- 
ity of  this finite measure on the Borel sets of  the polish space M '  it follows 
that for each D~ ~ A' there exists a sequence {K~}j~N of compact  subsets of 
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D~ such that Kljc_ K'ij+l and 

(J(M)v, G(D',))= sup <J(M)v, G(KIj)> (5) 
j~N 

hold. Again, the algebra 7~' generated by A' and all sets K~ is countable. 
Let E~(G(B')) be a version of the conditional expectation of 

G( B'), B' e E( M'), and define 

/3(x, B'):= EJ~(G(B'))(x) (6) 

where x e M and B 'e  A'. According to Proposition 5.1, we can choose 
versions E~(G(B')) that satisfy 

0 - / 5 (x ,  B') -< 1, /5(x, O) = 0, fi(x, M')  = 1 (7) 

for all x e M. Moreover, Proposition 5.1 implies that for any finite sequence 
B~ B2,. �9 B', of  mutually disjoint sets of ~' , ' . ,  A, the relation 

is fulfilled for P~-almost every x e M. Since 7~' is countable, there are only 
finitely many such sequences, and there exists a set No of measure zero 
such that 

B'-~/3(x, B') 

is finitely additive on A' for every x ~ No. 
From the properties of the observable G as a measure and the monotony 

t K ~ of  the sequence {K~}j~N it follows that G(Uj~N ij) = supj~N G(KIj) holds, 
which implies 

j e N  

F Pv-a.e. according to (v) of Theorem 4.1 and equation (6). Furthermore, 
we have 

J(M)v, G Kij jr 

and therefore for the set Hi.-"- Di\UjzN' Kij 

O=(J(M)u, G(H,i))= r _, , v E~( G( H i) ) dP~ J 
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where we have taken account of  equation (5). Because of E~,(G(Hi)) > - J  ' 
0 J J t F P~-a.e., this equation yields Ev(G(H~))  = 0 P~ -a.e. Hence, 

J ' E~ G 

holds J P~-a.e. From this, (9), and (6) we finally obtain 

~(x, DI)=sup ?(x, K:j) (10) 
j ~ N  

for all x ~  Ni, where the Ni are sets of measure zero. 
The set N : =  Now(_Ji~N Ni is a set with P~ (N)  = 0 such that the map 

/5: M x / ~ ' ~ R  defined by equation (6) satisfies (7), (8) and (10) for all 
x E CMN, where B', B'i ~ 7~' and D I e  A'. For every x e CMN, _P(x,. ) is a 
finitely additive measure on A' whose restriction to A' is continuous from 
above at Q, as we will show now. 

To that end, let x E CMN and {B',},~N be a sequence of sets of  A' with 
t r B,  ~ B,+I and f-'l,~N B'~ = Q. According to (10), for every e > 0 and every 

n c N there exists a compact  set K'~ (namely a suitable K,~) such that 
K "  _ B'n and 

P(x, B'.) - P(x,  K "  ) = P(x, B ' \ K "  ) < e/2" 

hold. From (-'].~N B'. = Q it follows that ['~.~N K "  = ~ ,  and the compactness 
l n o / of the K .  implies the existence of a number  no c N such that (-'). =1 K .  = 0 .  

We conclude that for any x ' c  B'o there is a number  j ~ N, 1 -<j-< no, such 
that x' ~ B'j\K~. Thus, 

- B 'o~  ~_J BI\K', 
i = 1  

holds. Because B ' o / 5 ( x ,  B') is a finitely additive measure on A', we obtain 

no  ~ n o  E 

/3(x, B'o) -< E P(x, BI \K ' i )<  E -~<e  
i = 1  i = 1  

In consequence, inf,~N/3(x, B ' )  = 0, and B ' ~ / 3 ( x ,  B') is a finitely additive 
measure on the algebra A' which is continuous from above at Q. 
Equivalently, for every x c CMN, P(x, �9 ) is o--additive on A'. 

By a well-known theorem, for every x ~ C M N ,  P(x , . ) :  A ' ~ R  can 
uniquely be extended to a o--additive measure P ( x , . )  on the o'-algebra 
"~(M'), since the algebra A' generates E (M ' ) .  The measure /3(x, .) is a 
probabili ty measure according to (7). I f  the set N of measure zero is empty, 
define P := P; otherwise, le t /x  be any probabili ty measure on E ( M ' )  and 

~/x (B') for x e N  (11) 
P ( x ' B ' ) : = ( P ( x , B ' )  for x ~ N  
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For each x ~ M, P(x, .) is a probability measure on E(M') .  Equation (6), 
N ~  E, and the definition (11) of P imply that P ( . ,  B') is a E-measurable 
function for each B ' c  A'. We observe that the class O' of all sets B '~ E(M' )  
for which x-~ P(x, B') is E-measurable is monotone. Because O' contains 
A', it also contains the monotone class O(A') generated by A', which coincides 
with the or-algebra E(A') generated by the algebra h'. Summarizing, we 
obtain E(M' )=E(A' )=O(A' )___O'c_E(M' )  and conclude O ' = E ( M ' ) .  
Hence, P: M x E ( M ' ) ~  R is a Markov kernel. 

By construction of P, P ( , ,  B') is a version of the conditional expectation 
of G(B') for every B'~ A', i.e., 

(J(B)v, G(B'))= ~ P(., B') dP~ (12) 
J B 

holds for all B' c A' and all B c E. If B is fixed, then 

B'~(J(B)v, G(B')), B'~ f Xs P(', B') dP~ 

are finite measures on E(M' )  coinciding on A', which implies their equality. 
Hence, equation (12) is valid for all B ~ E and all B '~  E(M' ) ,  i.e., P ( . ,  B') 
is a version of the generalized conditional expectation of G(B') and P is 
a conditional distribution of G. �9 

In conclusion, the weak assumption that M'  is a polish space and 
E ' = ' ~ ( M ' )  ensures the existence of generalized conditional distributions 
as well as their uniqueness in the sense that two conditional distributions 
differ at most on a set N x E ( M ' ) ,  where N is a set of measure zero. 
Nevertheless, there are important examples of observables and instruments 
for which the generalized conditional expectations and distributions can 
even be calculated and where (M',  E') need not be a polish space (Hellwig 
and Stulpe, 1983; Stulpe, 1986, 1987; this paper, Section 6). 

Finally, the generalized conditional distribution of  the observable G 
on (M',  ~')  is useful for calculating the conditional expectations for those 
l ~ W that can be represented as a certain kind of weak integral of functions 
with respect to O. We call a 7~'-measurable (not necessarily bounded) 
function f :  M'  ~ R integrable with respect to G if for any v ~ V the integral 
Sfd(v, G(. ))=: A(v) exists (equivalently, if for any v ~ K, SfdP~ exists). 
Then, as a positive linear functional on V, A is bounded, and due to the 
properties of the measurable function f, it is given by an element l ~ W  
because the observable G is effect-valued and (V,W) is a generalized 
probability space. Hence, we arrive at (v, I)=~fd(v, G(.)) for all v ~V  
where the uniquely determined element l-=: ~fdG is called the G-integral 
o f f  (cf. Stulpe, 1986). 
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Proposition 5.3. If P is a generalized conditional distribution of G 
given (J, v) and f :  M ' ~ R  a G-integrable function, then 

E~(f  f dG)(x)= f f(x') P(x, dx') 

holds for pV-almost all x ~ M. 

Proof: For characteristic functions XB,, B ' c  E', the assertion is true by 
definition; it is also valid for positive measurable functions with finitely 
many values, i.e., for positive simple functions. If f is any positive G- 
integrable function, then there exists a sequence {f,},~N of positive simple 
functions satisfying O<- f,<- fn+l such that f= su p ,~N fn ,  which implies 
O<--Sf~dG<--IJ',+,dG and ~fdG=sup,~NSf~dG. In consequence, by 
(v) of Theorem 4.1, we obtain 

to ho ld  v P~-a.e., i.e., given a version E~(IfdG), then for pF-almost  all 
x e M, Jf(x') P(x, dx') exists and is equal to E~(~fdG)(x). Now our asser- 
tion for an arbitrary G-integrable func t ion f  follows from the decomposition 
f = f + - f - ,  where f +  is the positive part o f f  and f -  the negative part. �9 

6. A P O S T E R I O R I  E N S E M B L E S :  S O M E  E X A M P L E S  

In this last section, we first consider a posteriori ensembles in general- 
ized probability theory, which were defined by Ozawa (1985a,b) in the yon 
Neumann algebra formulation of quantum mechanics, and then we will 
discuss some main examples. 

Definition 6.1. Let (V, W) be a generalized probability space, J an 
instrument on (M,E) ,  F:=J'(.)e, and vcK a fixed ensemble. A map 
~p~: M-->K, x->~(x)=:~x, is called a family {~bx}x~ M of a posteriori 
ensembles given J and v if: 

(i) ~P~ is W-weakly E-measurable, i.e., J (~b( . ) ,  I) is measurable for 
every I ~ W 

(ii) For every l ~ W  and any version E~(I) of the generalized condi- 
tional expectation of l given J and v, 

E~(1) = ( ~ ( . ) ,  I) (13) 

holds F Pv -a.e. 
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In this context, we will call v the a priori ensemble. 
Equation (13) is equivalent to 

(J(B)v ,  l) = f ( ~ ( x ) ,  l) P~(dx) (14) 
d B 

for all B ~ E and all l ~ W. That is, 

d B d 

where the latter two integrals are understood in the W-weak sense. If there 
exists a point x E M such that {x} E "~ and P~({x}) # 0, then we obtain from 
(14) 

�9 x = o ;~ (x )  = J ( { x } ) v / I I  J ( { x } ) ,~  II 
showing that qbx coincides with the ensemble obtained by the selection 
procedure according to the outcome x of F [compare equation (3)]. 
However, as (15) shows, in general ~ is only an ensemble-valued density 
of the positive-vector-valued measure B ~ J (B)v  [Ludwig (1985, 1986) calls 
the measure J ( .  )v a preparator of the ensemble J (M)v] .  

If qb{ is a family of a posteriori ensembles given (J, v) and G an 
observable on arbitrary (M',  E'), then 

P(x, B') := P~'~ B') := (~J~(x), G( B')) 

(x c M, B' ~ E') defines a Markov kernel P, which, according to (13), is a 
generalized conditional distribution of G given (J, v). Thus, the existence 
of a family of a posteriori ensembles ensures the existence of generalized 
conditional distributions of any observable. 

Our first example concerns classical probability theory, whose structure 
is at best reflected by the generalized probability space of Example 2.3(g). 
The ensembles are given as the probability measures on the measurable 
space (f~, Z), the effects as the measurable functions f fulfilling 0 - < f ~  X~a, 
and the decision effects are the characteristic functions XA, A ~ E. A random 
variable X on (f~, Y.) into another measurable space (M, E) is associated 
with its canonical instrument j x  defined by 

/ f  

j x  (B) v :'-- v(X -I(B) c~. ) (16) 

(B 6-~, u ~ V), which determines the decision observable 

B ~ F x (B) := ( j x ) , ( B ) e  = Xx-'(s) 

The probability distribution of F x in an ensemble/z c K is given by 

z~' F x f P .  (B):= (/.t, (B)) : XX-I(B) d~ = t~(X- ' (B) )  (17) 
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Now let Y be a further random variable from (f~, Z) to (M',  ~') and assume 
that a generalized conditional distribution P of B'~ FV(B ') := Xv '(B,~ given 
(jx, ix ) exists. By Theorem 5.1, this is guaranteed if M'  is a polish space 
and "~'= E(M') .  The Markov kernel P is defined by 

f - (jX(B)tz, FY(B'))= P(x, B') P• (dx) 
B 

(B ~ 7~, B ' c  ~'),  which, using (16) and (17), can be reformulated classically 
as 

/ ~ ( X - I ( B )  ~ Y-'(B')) P(', B') d(I-~ X-') '<B) 

= fx  '~B)n(x(w), B') I~(do~) 

According to Proposition 5.3, 

E : x ( f  fdFY)(x)= f f(x') P(x, dx ') (18) 

Fx 
holds for P~ -almost all x c M and every FY-integrable function f :  M'-~ R. 
From 

being valid for all v~V it follows that f is FV-integrable if and only i f f  
is measurable and f o  Y bounded (equivalently, i f f  is an F \es sen t i a l ly  
bounded, measurable function). Now, (v, SfdFY)=Sfo Ydv=(v, fo Y) 
implies 

f fdF v = f o  y 

Hence, in the classical case equation (18) means the well-known formula 

Y) := E~X(f o V) = f f(x') P(., dx') (19) EX(f o 

holding/z o X-l-a.e.  for all measurable functions f on M'  with f o  Yc W. 
We conclude this example by proving that in classical probability theory 

there always exists a family of a posteriori ensembles given the canonical 
instrument j x  of any random variable X: ~ M and given any a priori 
ensemble /~ c K, provided that ~ is a polish space and ~; = ~(l~). To that 
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end, consider a conditional distribution P of Y := idn given X, which is also 
called an expectation kernel. Inserting Y:= idn into (19) yields 

f E X ( f ) = E .  ( f ) =  f( to)  P ( - ,d to )  

j x  
/~ o X -l_a.e. for every f e  W. Now the probability measures ~x = ~ (x) := 
P(x, .  ) on s constitute a family {~x}xEA4 of a posteriori ensembles because 
x-+ ( ~ x , f ) =  Sf(to) P(x, do) is a measurable, bounded function on M and 

j x  
E~, ( f ) ( x ) = ( * x , f )  

F x 
holds for Pc  -almost all x e M and a l l f e  W. Conversely, it is easy to show 
that a family of a posteriori ensembles defines an expectation kernel. Thus, 
in classical probability theory families of a posteriori ensembles and expecta- 
tion kernels are corresponding bijectively, and the condition (~2, 3~) being 
a polish space is sufficient for the existence of both. 

Next let us consider usual quantum mechanics as established by the 
generalized probability space Example 2.3(c). Here the ensembles are 
described by the statistical operators acting in the Hilbert space H, the 
effects by the bounded self-adjoint operators A fulfilling 0-< A -< 1 (1 denot- 
ing the unit operator), and the decision effects are the orthogonal projections 
in H. We will calculate the quantum conditional expectations given a yon 
Neumann-Liiders instrument J and an ensemble W e  K. Let M be the set 
N of positive integers or a finite subset, E := I I (M)  the power set of M, and 
let {En},~N be a sequence of orthogonal projections corresponding to an 
orthogonal decomposition of H. Then such an instrument may be defined 
on (M, w) by 

J(B)V:= Y~ E, VE, (20) 

(B e 7~, V e V), where the possibly infinite sum converges with respect to 
the trace norm. J determines the decision observable F given by 

F(B) i= J'(. )e = 2 E, 

[the sum converging in the strong operator topology in B(H)]; the probabil- 
ity distribution of F in the ensemble W is given by 

P~v(B) := (W, F(B))= tr WF(B)= 2 tr WE~ (21) 
i c B  

Insertion of (20) and (21) into equation (2) now yields 

t r ( J (B)  W)A = • tr E~ WE~A = 2 EJw(a)(i) tr WE, 
i ~ B  i e B  
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for any bounded,  self-adjoint operator A c W and all B ~ ~-. Hence, we 
obtain 

ESw(A)( i ) = tr E, WE~A 
tr WEi 

for every i c M with tr WEi # 0 (if tr WEi = O, then {i} is a set of  measure 
zero). Moreover, for a family {~,}i~M of a posteriori ensembles 

c~i = ~sw(i) _ E, WE,_ J({i}) W 
tr WE, II J({iI) Wll 

necessarily holds if tr WEi # 0, and the conditional distribution P of an 
observable G on an arbitrary measurable space (M',  E') is given by 

tr E, WE~ G( B') 
P( i, B') = tr ~,  G( B') - 

tr WEi 

(i~ M,B'  cE',  tr WE,#O). 
As final example we mention the so-called nuclear instruments, which 

can be defined in quantum mechanics as well as in the general theory. Let 
a generalized probability space (V, W) and an observable F on (M, E) be 
given, and let ~:  M * K  be a map such that for every B e E  the map 
XB(" )~(" ) is W-weakly integrable with respect to every measure (v, F ( .  )), 
v e V [this property of  �9 follows from its strong measurability, and in the 
yon Neumann algebra case as described in Example 2.3(d), solely the 
W-weak measurability of  q? is sufficient]. Under these assumptions F and 

define an instrument by the W-weak integral 

J(B)v := JF'*(B)v := [ ~(x)(v,  F(dx))  (22) 
J B 

(B c E, v e V); conversely, J determines the observable F = J ' ( .  )e uniquely, 
but in general not ~.  Instruments of the form J = jF,~ are called nuclear. 
By comparison of (22) with (15), resp. (14), we see that a family {~x}x~M 
of a posteriori ensembles given J and v e K is constituted by 

�9 x = o ' s ( x )  = ~ ' ~ ' * ( x ) : =  O ( x )  

resp., ~ := O. In particular, { ~ } ~ M  does not depend on v c K. 
Applying abstract operator-theoretic methods, Ozawa (1985b) proved 

the surprising result that in conventional quantum mechanics there always 
exists a family of a posteriori ensembles given any arbitrary instrument and 
any ensemble. By an example he pointed out that, however, this is not true 
for the von Neumann algebra case. Thus, as expected, in generalized 
probability theory families of a posteriori ensembles do not exist in general, 
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whereas generalized conditional distributions for observables defined on 
polish spaces do always exist, as we have shown by application of methods 
of classical probability theory. 
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